Acta Crystallographica Section E
Structure Reports Online

ISSN 1600-5368

Shu-Shang Zhang, ${ }^{\text {a }}$ Bo Yang, ${ }^{\text {a }}$
Yan-Fang Wang, ${ }^{\text {a }}$ Xue-Mei Li, ${ }^{\text {a }}$ Kui Jiao, ${ }^{\text {a }}$ Mohammad. B. Kassim ${ }^{\text {b }}$ and Bohari. M. Yamin ${ }^{\text {b }}$ *
${ }^{\text {a }}$ College of Chemistry and Molecular
Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042,
People's Republic of China, and ${ }^{\mathbf{b}}$ School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor, Malaysia
Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.030$
$w R$ factor $=0.083$
Data-to-parameter ratio $=16.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

$\operatorname{Bis}\left(O, O^{\prime}\right.$-di- p-tolyldithiophosphato- $\left.\kappa^{2} S, S^{\prime}\right)$ nickel(II)

The title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{PS}_{2}\right)_{2}\right]$, consists of discrete molecules with the Ni atom chelated by both S atoms of the p-tolyldithiophosphate ligands in a bidentate manner in a four-coordinate environment. The molecule has inversion symmetry about the Ni atom, and the geometry is nearly perfect square planar, with $\mathrm{S}-\mathrm{Ni}-\mathrm{S}$ chelate bond angles of 89.12 (2) ${ }^{\circ}$.

Comment

Studies on metal-dithiophosphate and dithiophosphinate complexes are nowadays driven by their biological properties such as fungicidal and antibacterial activity (Livingstone \& Mihkelson, 1970) and in materials applications, such as additives in lubricating oils (Jones \& Symes, 1971; Shiomi et al., 1989). In the title compound, (I), the molecule is discrete and has a centre of inversion at the central Ni atom. The geometry at nickel is nearly a perfect square plane, with an $\mathrm{S}-\mathrm{Ni}-\mathrm{S}$ chelate bond angle of 89.12 (2) A . The $\mathrm{Ni}-\mathrm{S}$ distances [2.2298 (5) and $2.2348(5) \AA$] are in agreement with other analogues, such as $\left[\mathrm{Ni}\left(\mathrm{S}_{2}(\mathrm{POEt})_{2}\right)_{2}\right] \quad[2.230(4)$ and 2.236 (4) \AA; McConnell \& Kastalsky, 1967] and $\left[\mathrm{Ni}\left(\mathrm{S}_{2} \mathrm{P}(\mathrm{OMe})_{2}\right)_{2}\right][2.225$ (5) and 2.219 (2) \AA; Kastalsky \& McConnell, 1969]. The other bond lengths and angles are in normal ranges (Allen et al., 1987) and comparable with other square-planar nickel(II) complexes. The $\mathrm{NiS}_{4} \mathrm{P}_{2}$ fragment is essentially planar with a maximum deviation of 0.153 (1) \AA for atom S2 from the mean plane. The interatomic distance between Ni1 and P 1 of 2.7914 (6) \AA is shorter than that of the octahedral [Niphen $\left(\mathrm{S}_{2} \mathrm{PO}_{2} \mathrm{C}_{6} \mathrm{H}_{14}\right)_{2}$] [3.022 (1) and 2.969 (2) \AA; Hao et al., 2001]. The ester fragments, $\mathrm{O} 1 / \mathrm{C} 1-\mathrm{C} 7$ and $\mathrm{O} 2 /$ $\mathrm{C} 8-\mathrm{C} 14$, are essentially planar, with maximum deviations of 0.157 (1) \AA for O 1 and 0.030 (1) \AA for O 2 , respectively. The two fragments make an angle with each other of $61.10(11)^{\circ}$.

Experimental

$\mathrm{Na}_{2}\left[\mathrm{~S}_{2} \mathrm{PO}_{2} \mathrm{C}_{6} \mathrm{H}_{14}\right]_{2}$ was first prepared according to the method described in the literature (Kabachnik \& Mastryukova, 1953). To a warm 30 ml deionized water solution of $\mathrm{Na}_{2}\left[\mathrm{~S}_{2} \mathrm{PO}_{2} \mathrm{C}_{6} \mathrm{H}_{14}\right]_{2}(6.0 \mathrm{~g}$, 12.7 mmol) was added 20 ml aqueous solution of $\mathrm{NiSO}_{4}(1.6 \mathrm{~g}$, $10.3 \mathrm{mmol})$. The mixture was stirred for 20 min and refluxed for 30 min . The solution was filtered and the purple precipitate was washed and dried under vacuum. Crystals suitable for X-ray investigation were obtained by recrystallization from acetone.

Received 24 February 2004 Accepted 19 March 2004 Online 31 March 2004

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{PS}_{2}\right)_{2}\right]$
$M_{r}=677.39$
Triclinic, $P \overline{1}$
$a=7.1884(11) \AA$
$b=9.3158(14) \AA$
$c=12.1699(18) \AA$
$\alpha=78.605(2)^{\circ}$
$\beta=81.335(2)^{\circ}$
$\gamma=78.557(2)^{\circ}$
$V=777.7(2) \AA^{3}$

Data collection
Bruker SMART APEX diffractometer

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.638, T_{\text {max }}=0.798$
8064 measured reflections

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.446 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 4396 \\
& \quad \text { reflections } \\
& \theta=1.7-26.0^{\circ} \\
& \mu=1.03 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, purple } \\
& 0.48 \times 0.26 \times 0.23 \mathrm{~mm}
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.083$
$S=1.04$
3031 reflections
180 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

Ni1-S2	$2.2298(5)$	S2-P1	$1.9743(7)$
Ni1-S1	$2.2348(5)$	$\mathrm{P} 1-\mathrm{O} 1$	$1.5830(13)$
S1-P1	$1.9782(7)$	$\mathrm{P} 1-\mathrm{O} 2$	$1.5877(14)$
	$89.12(2)$	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2$	$99.39(7)$
S2-Ni1-S1	$82.75(2)$	$\mathrm{S} 2-\mathrm{P} 1-\mathrm{S} 1$	$104.85(3)$
P1-S1-Ni1	$82.97(2)$		
P1-S2-Ni1			

After their location in a difference map, all H atoms were fixed geometrically at ideal positions and allowed to ride on the parent C atom, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ or $1.2 U_{\text {eq }}(\mathrm{C})$, respectively.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The molecular structure of the title compound, with 50% probability displacement ellipsoids. [Symmetry code: (A) $2-x, 1-y,-z$.]

This project was supported by the Natural Science Foundation of China (No. 20275020), the Natural Science Foundation of Shandong Province (No. Z2002B02) and the outstanding Adult-Young Scientific Research Encouraging Foundation of Shandong Province (No. 03BS081). The authors also thank the Malaysian Government and Universiti Kebangsaan Malaysia for research grant IRPA No. 09-02-020163.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Hao, Q., Fun, H.-K., Chantrapromma, S., Razak, I. A., Jian, F., Yang, X., Lu, L. \& Wang, X. (2001). Acta Cryst. C57, 717-718.
Jones, J. R. \& Symes, T. J. (1971). J. Chem. Soc. C, pp. 1124-1130.
Kabachnik, M. I. \& Mastryukova, T. A. (1953). Izvest. Akad. Nauk SSSR Otd. Khim. Nauk. pp. 121-24. (In Russian).
Kastalsky, V. \& McConnell, J. F. (1969). Acta Cryst. B25, 909-915.
Livingstone, S. E. \& Mihkelson, A. E. (1970). Inorg. Chem. 9, 2545-2551.
McConnell, J. F. \& Kastalsky, V. (1967). Acta Cryst. 22, 853-859.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Shiomi, M., Tokashiki, M., Tomizawa, H. \& Kurubayashi, T. (1989). Lubr. Sci. 1, 134-137.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

